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Pixel gradient-based adaptive iterative median filter for
image impulse noise removal
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Abstract: Image impulse noise removal is essential for obtaining high-quality images. A novel pixel gradients-
based adaptive iterative median filter is proposed to remove image impulse noise by utilizing the principles of ther-
mal infrared camera imaging. Firstly, the maximum pixel gradient of the original image is computed based on the
camera’s modulation transfer function (MTF), and a corresponding set of pixel gradients is established. Subse-
quently, the gradient weight root-mean-square error (GWRMSE) set of the original image and the corresponding
pixel gradient filtered image is computed, and the optimal pixel gradient is determined as the one corresponding to
the maximum value of Gaussian distribution of the GWRMSE set. Finally, the adaptive window size and number
of iterations for the proposed filter are determined according to the density and complexity of the impulse noise in
the image. Extensive experimental results demonstrate that the proposed filter exhibits excellent robustness in re-
moving 8-bit and 16-bit single-channel impulse noise images. In comparison with other state-of-the-art methods,
the proposed method can remove low-density random-valued impulse noise (RVIN) and salt-and-pepper noise
(SAPN) in real thermal infrared camera-acquired images in real-time while preserving more than 99. 5% of origi-
nal pixels during the noise removal process. Additionally, for high-density SAPN removal, the proposed method
achieves competitive results, demonstrating better peak signal-to-noise ratio (PSNR) and structural similarity in-
dex (SSIM) in comparison with filtering methods of faster running time and faster execution time in comparison
with denoising methods of superior PSNR and SSIM. Moreover, it can recover meaningful image details even for
images severely damaged by extreme SAPN (99%).

Key words: image denoising, adaptive iterative median filter, pixel gradient, Modulation Transfer Function,
impulse noise
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Introduction

Image impulse noise removal is a crucial preprocess-
ing step for obtaining high-quality images in various digi-
tal image processing applications, including aerospace,
biomedical engineering, industrial inspection, and robot
vision. Impulse noise contamination can occur during ac-
quisition, transmission, and recording due to different
factors such as detector and circuit systems, channel
transmission errors, non-ideal media between the scene
and the imaging system, and memory location errors in
the hardware components'”. Impulse noise affects only
some of the pixels of an image while leaving others unaf-
fected. Two major impulse noise models, namely the
Salt-and-Pepper Noise (SAPN) model, where the noise
pixels assume only the highest and lowest values of the
digital number (DN) in the dynamic range of the image,
and the Random-Valued Impulse Noise (RVIN) model,
where the noise pixels can assume value in the dynamic
range of the image with equal probability, have been de-
scribed in the literature ',

The median filter (MF) " has gained wide applica-
tion due to its simple structure, fast execution time, and
ability to preserve edge information. However, a limita-
tion of the MF is its poor noise removal performance
since it replaces the DN value of each pixel with the me-
dian found within a specific window. Therefore, various
variants of the MF have been developed, such as the
weighted median filter (WMF) "', center-weighted medi-
an filter (CWMF) 7, adaptive median filter (AMF) ",
adaptive switching median filter (ASMF) ", progres-
sive switching median filter (PSMF) "*", adaptive dual-
threshold median filter (ADTMF) """, directional differ-
ence-based switching median filter (DD-SMF) "', deci-
sion-based filters "', spatially varying median filter
(SVMF) "', and three-state median filter (TSMF) ',
These methods improve the MF’s ability to remove high-
density impulse noise by detecting noisy pixels within the
window. Furthermore, some enhanced versions, such as
the effectively improved boundary discriminative noise
detection filter (IBDNDF) ", the switching adaptive
median and fixed weighted mean filter ', the unsymmet-
ric trimmed adaptive median filter (UTAMF) " and
the median-type noise detectors and the detail-preserving
regularization method "', also exhibit better performance
and can successfully recover meaningful image details
even from images damaged by 90% SAPN.

Of course, researchers have also contributed excel-
lent image-denoising strategies from other theoretical as-
pects. Chen™ proposed a weighted coupled sparse repre-
sentation model with classified regularization to remove
impulse noise in images by dividing image pixels into
clear, slightly damaged, and severely damaged pixels.

CERFRIZAD : A

The low-rank Hankel matrix based on the annihilating fil-
ter is a compelling image restoration method. Jin"”'" ex-
tended this idea and proposed a sparse and low-rank de-
composition of a Hankel-structured matrix for impulse
noise removal. In Ref. [22], the authors presented an
adaptive detail-preserving filter based on a cloud model
that can remove up to 95% of SAPN while preserving
good image details. Fuzzy theory is often used to solve
uncertainty problems and has profound implications for
image denoising. For example, the adaptive network-
based fuzzy inference system filter and the regression-
based neuro-fuzzy network trained by the ABC algorithm
can eliminate impulse noise *'. Besides, Ahmed"" pro-
posed an iterative adaptive fuzzy filter using alpha-
trimmed mean that can retrieve meaningful details even
at up to 97% SAPN. Singh™' achieved excellent results
on standard test images with 20% to 99% SAPN damage
using their proposed adaptive type-2 fuzzy filter.

In recent years, deep learning has been widely ap-
plied to image denoising, particularly for Gaussian
noise, Gaussian additive white noise, and Gaussian-im-
pulse mixture noise . However, only a few deep-
learning models have been used for impulse noise remov-
al. Notable examples include the denoising framework
based on deep convolutional neural network (CNN) for
suppressing impulse noise in color images ", the effi-
cient CNN with particle swarm optimization (PSO) mod-
el for high-density impulse noise removal ', the CNN-
based image restoration method for impulse noise remov-
al ', and the switching filtering technique using deep
learning for impulse noise removal . They accomplish
image denoising through two main processes: 1) utilizing
neural networks to detect impulse noise in the image and
2) inputting the detection results into the denoising mod-
ule to reconstruct the denoised image.

Although various variants of median filters, fuzzy fil-
ters, and image denoising and restoration models based
on deep learning have been developed by previous re-
searchers, only some have explored image noise removal
strategies from the fundamental level of digital camera im-
aging principles. Digital cameras are complex products
that integrate optics, mechanical structures, and elec-
tronics. During imaging, the image sensor (CCD or
CMOS) converts light signals into discrete electronic sig-
nals, which are further converted into digital signals.
The number of pixels on the image sensor is represented
as a matrix of rows and columns, where the numerical
signal in each cell corresponds to the DN value in the dig-
ital image. Due to design errors in optical devices, the
resolution of the image sensor, the wave-particle duality
of light, and the complexity of the observed area, neigh-
boring pixels exhibit subtle differences, which can be un-
derstood as pixel gradients between adjacent pixels.
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Therefore, by exploring the camera imaging model, we
propose an adaptive iterative median filter based on pixel
gradients, summarized as follows.

1) The modulation transfer function (MTF) , as a
performance indicator of the camera, can calculate the
maximum pixel gradient of the captured image and estab-
lish a pixel gradient set. Subsequently, the gradient
weight root-mean-square error (GWRMSE) set of the
original image and the corresponding pixel gradient fil-
tered image is computed. The Gaussian distribution of
the GWRMSE set is calculated using a Gaussian func-
tion. Finally, the pixel gradient corresponding to the
Gaussian distribution’s maximum value is considered the
optimal pixel gradient for removing the impulse noise in
the image.

2) Our proposed filter consists of two types of medi-
an filters. The first type includes two orthogonal judg-
ment-based median filters with window sizes 3X3, com-
bined with the optimal pixel gradient for real-time remov-
al of the image's discrete, low-density RVIN and SAPN.
The second type is an adaptive window size median filter
combined with the optimal pixel gradient and SAPN attri-
bute set for removing high-density SAPN.

3) The adaptive window size and number of itera-
tions are determined based on the density and complexity
of the impulse noise in the image, and the proposed filter
is used to achieve noise removal.

1 Methods

Digital images are represented using a two-dimen-
sional array, where the rows and columns determine the
position of each pixel in the image. The DN value of a
pixel represents the grayscale value with statistical spa-
tial characteristics. During the imaging process, the
camera discretizes the shape of objects into points,
lines, and surfaces. Uniformly distributed objects in the
scene should have the same DN value for all pixels in the
image. However, due to limitations imposed by the cam-
era’s optical system and image sensor materials and de-
sign techniques, each pixel only represents the statistical
properties of the corresponding region. In other words,
the DN values of pixels representing the same object can
vary, as shown in Fig. 1. Therefore, we propose using

pixel gradients to describe the fluctuation range in non-
uniform DN values.

Fig. 1 Distribution of pixel DN values in a uniform region and
an edge region on the image.
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1.1 Modulation Transfer Function (MTF)

The MTF™ provides an intuitive description of the
transfer process of light information through optical me-
dia and devices. It comprehensively and objectively char-
acterizes the sharpness of images. The corresponding for-
mula is as follows:

MTF(w,.»,) = ‘H(a)x,w,)‘ = Ho.,) , (1)
’ : Olw,.w,)
where I(w,,»,) and O(w,,w,) are the spatial spectrum
of the image and object, respectively. H(w,,,) is the
Fourier transform of the point spread function, called the
optical transfer function. w, and o, are 2D spatial fre-
quencies expressed in terms of circular frequencies.

The light distribution of an optical image can be re-
garded as a combination of countless spatial frequency si-
nusoidal wave distributions. Specific frequency sinusoi-
dal grating stripes define the modulation depth of the si-
nusoidal distribution, and testing requires projection
brightness with a sinusoidal variation as the target. How-
ever, this poses a significant challenge for production.
To facilitate laboratory MTF testing, a square wave target
corresponding to the limiting spatial frequencies is com-
monly used ™', as shown in Fig. 2(a).

Fig. 2

(a) The square wave target; (b) MTF calibration of mid-
wave infrared camera using a square wave target. : (a) (b)
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When a mid-wave infrared imaging system captures
an image of a square wave target, the system outputs the
peak intensity I, corresponding to the transparent slits
and the valley intensity [, corresponding to the target
surface patterns, as shown in Fig. 2(b). In this way,
the Contrast Transfer Function (CTF) can be represented
as the ratio between the amplitude of signal fluctuations
and the average signal level, as follows:

I -1
CTF — max min 2
I +1 . @

Since the square wave signal can be expanded into a
Fourier series of its fundamental frequency and its multi-
ples of AC signals, the CTF can also be expressed as the
sum of the MTF of the fundamental frequency and its mul-

tiples of the square wave signal as the following:
| e

CTF =4[MTF _ MTF . MTF  MTF L
™ 3 5 7
When the frequency of the square wave signal ex-
ceeds 1/3 the cut-off frequency, the higher order terms
MTF can be ignored. CTF is redefined as:

CTF = %MTF . (4
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1.2 Optimal pixel gradient

Once the optical calibration of the imaging system is
completed in the laboratory, the optimal MTF value of
the camera is determined. This allows for the calculation
of the maximum gradient g, between adjacent pixels, as
mentioned below :

4

Zun = Lo = Ly = — (L + 1, ) X MTF . (5)

min

In practical scenarios, due to losses during light
propagation, the relative brightness values of the high-
lights in the image are lower than those of the scene.
Conversely, due to the effects of stray light, scattering,
and diffraction, the relative brightness values of the shad-
ows in the image are higher than those of the scene. How-
ever, for an ideal optical system without aberrations,
stray light, scattering, reflection, or absorption, the de-
scribed situation would not occur. Nonetheless, they all
satisfy the following equation :

(L + 1) = 1 = I . (6)
where I denotes the maximum value of the dynamic
range of the image acquired by the camera in the corre-
sponding spectral range. Similarly, I represents the
minimum value of the dynamic range of the image cap-
tured by the camera in the corresponding spectral range.

By utilizing the optimal MTF value of the camera,
we can calculate the maximum gradient g, between adja-
cent pixels. This allows for the representation of the pixel
gradient set of the camera’s captured image G, as men-
tioned below :

G={g/]l <gi<gueeN| . ()
where g, is the k-th pixel gradient of the set G.

In addition to the factors influencing the brightness
values of the image mentioned earlier, the optical system
is also affected by the presence of objects and back-
ground in the imaging area. Each pixel captures the DN
value corresponding to the imaged area. Specifically,
when the pixel’s imaged area corresponds to an object’s
surface, the DN value represents the light information
from the object, and the optical system solely influences
the gradient between adjacent pixels. However, when
the pixel’s imaged area falls on the edge of an object, the
DN value represents both the light information from the
object and the background. The optical system and the
background brightness values influence the gradient be-
tween adjacent pixels. Therefore, it is necessary to deter-
mine an optimal pixel gradient for a specific optical imag-
ing system.

Firstly, based on the proposed filter, we calculated
the root-mean-square error r, between the pixel gradient
g, corresponding to the filtered image I, and the original
image I, as shown below:

M N .. ..
rA(Ik):/zl_lzj_l(Ia(LJ)_Ik(LJ))Z s
M x N
where M X N is the image size.

To ensure a more precise assessment of the optimal
pixel gradient based on the computed r, (I,) for different
pixel gradients g,, we have conducted further calcula-
tions of r, (I, ) within a unit pixel gradient, as follows:

(8)

hi(ri.g,) = M . 9
&
where h,(r,, g,) denotes the GWRMSE of r,(I,) with re-
spect to the pixel gradient g,.

In this manner, we can represent the pixel gradients

set G corresponding to the GWRMSE set H as follows:
H = {((rkagk)9hk(rkagk))avrk < 8 € G} ., (10)
Subsequently, we have employed a Gaussian func-

tion to establish a Gaussian distribution model A for the
GWRMSE set H, which can be expressed as:

hy—p
Jilhy)=e > . (1)
S

po== . (12)
o = z:,(’ih _M) 7 (13)
A ={(h,f,(h,)).Yh, € H} . (14)

where f, is the Gaussian function corresponding to the
GWRMSE h,. u denotes the mean value of the set H. o
denotes the standard deviation of the set H. n denotes
the full number of elements of the setH.

Finally, we designate the maximum element in set
A to correspond to the h; element in set H, which in turn
corresponds to the g, element in the set G, as the optimal
pixel gradient g,, for image filtering, as follows:

Eop = {gk|maX(A) & h, o g.Yh, e HVg, € C},(lS)
1.3 Theory of the proposed filter

Based on the calculated optimal pixel gradient, we
can determine the optimal fluctuation range among neigh-
boring pixels in the original image, including the surface
and edge of the feature. In other words, when the pixel
gradient between the central pixel and its neighboring
pixels is less than the optimal pixel gradient, we consider
the central pixel to be not impulse noise; otherwise, it is
classified as impulse noise.

The proposed filter utilizes two types of MFs. The
first type is primarily employed for real-time removal of
dispersed, low-density RVIN and SAPN, employing two
orthogonal-based MFs, F, and F,, with window sizes of
3X3, as depicted in Fig. 3. F, considers the pixels
above, below, left, and right of the center pixel as neigh-
bors to form the orthogonal setup. Similarly, F,uses the
pixels in the top-left, bottom-left, top-right, and bottom-
right positions as neighbors to establish the orthogonal
configuration. By establishing these two orthogonal rela-
tionships, we can determine if the center pixel satisfies
the range defined by the optimal pixel gradient, allowing
for rapid identification of whether the center pixel corre-
sponds to impulse noise.

The decision formula for the center pixel, neighbor-
ing pixels, and optimal pixel gradient associated with F,
is expressed as follows :

Agi =Py = Piciy = &un
Agi, =Py = Piviy = &un
Agis =Py = Pij-1 = &un
Agiy = Piy = Pijet = &un

. (16)
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Agy =pioij = Pi ™ &
Agy = Piviy = Piy = &um
Agyy =piy-1 =Py~ &
Agsy = Pijii = Piy = &un

. (17)

where Agy, Agi,, Agis, Agiy, Agy, Agy, Agy, and
Ag,, are the differences between the gradient of the cen-
tral pixel p, ; and the adjacent pixels p, _, ;, p,,, > p.;-, or
P+ minus the optimal pixel gradient g,,.

Pi-1,j Pi-1,j-1| Pi-1,j+1|
Pij-1 . Pij+1 .
Pi+vj Pit1j-1 Pit1,j+1]
(a) (b)
Fig. 3 (a) Orthogonal-based MF F; (b) (a) Orthogonal-based
MF F,
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The decision formula for the center pixel, neighbor-
ing pixels, and optimal pixel gradient associated with F,
is expressed as follows :

AgY =Py =Pt ™ B
Ag?z =Piy " Piv1j-1 = 8o

Agly =Py = Pisijer ~ & - 19
Agli=py = Picijo1 = &
A =Picijo1 =Py~ B
Ag§2:pi+l,j—l_py—gopt . (19)

Ag; =Pi-yj+1 P~ 8o

Ags, SPivij-1 T Pij T 8o
where Ag?], Ag?z’ Agfg, Agﬁ, Ag;v Ag%v Ag;’ and

Ag?, are the differences between the gradient of the cen-

tral pixel p,; and the adjacent pixels p, |, |, pi.1, 1>
Piv1j-10T Dy, minus the optimal pixel gradient g,,.
When Ag;, =20, Ag,=0, Ag,>0, and

Agi, =20, or Ag;, =20, Ag), 20, Ag,; =20, and Ag), =
0, or Ag:, =20, Ag},>0, Agl, =0, and Ag;, =0, or
Ag3 =0, Agy, >0, Agy, 20, and Agl, = 0, the cen-
tral pixelp, ; is classified as impulse noise. Subsequent-
ly, we need to establish a 3x3 window centered at p, ,
where all the pixels within the window are utilized to re-
store the central pixel p, ; quickly. The corresponding set
of pixel intensities W, ;, as follows:

W, ={p.,.[-1<ki<lkleZ], . (20)

Finally, we use the median value v, ; of the set W,

instead of the center noise pixel p, ;, as follows :

v,; = median(W ;) , (21)

where median denotes the median model for computing

the set W, ..

Fig. 4 MF F, with an adaptive window size, left window size
T =1, next window size T = 2
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The second type of MF is primarily designed to re-
move high-density SAPN. It is an adaptive median filter
F, which employs a variable window size, as illustrated
in Fig. 4. The adaptive window size of F is established
around the central pixel p,; as a (2T + 1) X (27 + 1)
neighborhood, where the selection of the window size T
depends on the SAPN density. The set of pixel intensi-
ties within the window is represented as W:j, and it is ex-
pressed as follows:

W!={p. . |-T<klI<TkLTeN} . (22)

Then, the median value v/, of W/, can be comput-
ed, and the SAPN within ij can be effectively removed
to form a new set W', as described in the following:

vl = median(W?;) , (23)
w;, =[l,.sNi,P . (24)
where S denotes the salt noise set S = {["’ I e N}. P

max? © max

denotes the pepper noise set P = {Il‘f,{n, " e N}.
Subsequently, we can establish a weight set C to de-

termine whether the center pixel p, ; is a noisy pixel based

on the median value v, and the optimal pixel gradient

&> as shown below:
C= {c’viz —gu<c<uv+g,.ceE R} , (25)

where ¢ denotes the element in the weight set C. When
yL-T'j =gy < I, viT'j = 8o = I . When vfj + 8> I,
Vi ¥ Bon = i
Finally, we decide whether the center pixel p, ; is a
noisy pixel. If p,; € Cor W, = &, then p, ; is considered
non-noisy. Otherwise, p, . is a noisy pixel. We utilize the
median value v;, from the set W, to restorep, ;, as illus-
trated below:
v = median(W?) , (25)
By proposing the pixel gradient-based adaptive me-
dian filter, we can effectively remove dispersed, low-
density RVIN and SAPN in remote sensing images in real
time and eliminate high-density SAPN in the image. The
entire noise removal process is outlined in Algorithm 1.
In general, for impulse noise images captured by the
same camera, the pixel gradients for noise removal re-
main consistent due to the fixed MTF. When applying Al-
gorithm 1 for the first time on an impulse noise image,
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the proposed filter does not damage the regions unaffect-
ed by impulse noise interference. Similarly, successfully
removed areas of impulse noise are not compromised dur-
ing the iterative filtering process until all noise within the
image is eliminated. It is important to emphasize that the
number of iterations (Iters) and the adaptive window size
(T) of Algorithm 1 are determined by the SAPN density
(D), asindicated in Table 1.

Algorithm 1 Pixel gradient—based adaptive iterative MF
Huk 1 S TREB RN 1 10 A AR E DR

Input: Impulse noise image I, optimal pixel gradient g,,, adaptive win-

dow size T, impulse noise density D.
Output: Filtered image I,.
1. Forall pixels p, ;in 1, do
2. Calculate Ag},, Agi,, Agls, Agl,, according to Ep. (16).
3. IfAg}, > 0and Ag}, > 0 and Ag}; > Oand Ag], > 0
4. Caleulate v, ; according to Eps. (20) = (21). p! = v, .

5. Calculate Ag),, Agy,, Agl;, Ags,, according to Ep. (17).
6. FElseif Ag), > 0 and Ag), > 0 and Ag), > 0 and Agy, > 0

7. Calculate v, ; according to Eps. (20) - (21). pf"j =0,
8. Calculate Agt,, Agl,, Agly, Agl,, according to Ep. (18).
9.  Elseif Ag], > 0 and Ag}, > 0 and Ag}, > 0 and Ag, > 0

10. Calculate v, ; according to Eps. (20) - (21). pfj =0,
11.  Calculate Ag3,, Ag3,, Agl;, Ag,, according to Ep. (19).
12.  Elseif Ag3, > 0 and Ag3, > 0 and Ag3; > 0 and Ag3, > 0

13. Calculate v, according to Eps. (20) — (21). P?,j =0,
14. Else
15. ID<1%
6. pi=py
17. Else
18. Calculate Wf/, v[TJ, Wfp, C, v"T" according to

Eps. (22) - (26).

19. Ifp,;eC
20. Pi= Py
21. Elseif W!, = &
22. Pl =0l
23. Else
24. pi’_l = 1/"Tp
25. End if
26. End if
27.  Endif
28. End for

29. All pixels p!;in I,

2 Results and Discussions

In this section, we use mid-wave infrared (MWIR)
images, long-wave infrared (LWIR) images captured by
real cameras, and open-access available datasets to vali-
date the effectiveness of the proposed filters and compare
them with state-of-the-art impulse noise filters. All exper-
iments are conducted on an Intel Core i7-10700F 2.9

Table 1 The division intervals of the SAPN density (D),
and the corresponding number of iterations
(lters) and adaptive window size (7)

F1 WEBREZE (D)X S XE, DRI RE

(Iters) FN HIEM & O A/ T)

D(%) [0, 1] (1,20] (20,60] (60, 80] (80, 99]
lters 0 0 1 2 2
T 1 1 171 1/1/1 2~15/2/1

GHz processor with 16 GB RAM and NVIDIA GeForce
GTX 1 660 Ti, running MATLAB 2019a.
2.1 Optimal pixel gradients of camera

To validate the optimal pixel gradient g,, computa-
tion model, we utilized 100 640x512, 16-bit MWIR raw
images and 100 320%256, 16-bit LWIR raw images ac-
quired by a thermal infrared array scanning camera, and
the noise distribution models corresponding to the partial
MWIR and LWIR raw images are shown in Fig. 5. The
optical system of the thermal infrared array scanning cam-
era is shown in Fig. 6, with corresponding parameters
listed in Table 2. After laboratory optical calibration of
the MWIR camera, the average MTF was measured to be
0.281 0 (the mean MTF value for the eight directions
and centers of the image sensor). We are considering the
maximum dynamic range of the MWIR camera as I =
11000 and the minimum dynamic range as [ = 8 000;
the maximum pixel gradient achievable by this camera is
Zua = 1073, Consequently, the pixel gradient set G =
{1 < g, < 1073}is established. Subsequently, utilizing
the proposed method, we compute the GWRMSE set H
and the corresponding Gaussian distribution set A. By
analyzing the distribution curves of the GWRMSE func-
tion h,(r,, g,) and the Gaussian function f, (h,) with re-
spect to the pixel gradient g,, we determined that the op-
timal pixel gradient g,, for a single MWIR raw image is
142, as depicted in Fig. 7.

To validate the optimal pixel gradient g,, computa-
tion model, we utilized 100 640x512, 16-bit MWIR raw
images and 100 320x256, 16-bit LWIR raw images ac-
quired by a thermal infrared array scanning camera, as
shown in Fig. 5. The optical system of the thermal infra-
red array scanning camera is shown in Fig. 6, with corre-
sponding parameters listed in Table 2. After laboratory
optical calibration of the MWIR camera, the average
MTF was measured to be 0.2810 (the mean MTF value
for the eight directions and centers of the image sensor ).
We are considering the maximum dynamic range of the
MWIR camera as [ = 11000 and the minimum dynam-
ic range as I = 8000; the maximum pixel gradient
achievable by this camera is g, = 1073. Consequent-
ly, the pixel gradient set G = {1 < g, < 1073} is estab-
lished.

Subsequently, utilizing the proposed method, we
compute the GWRMSE set H and the corresponding
Gaussian distribution set A. By analyzing the distribu-
tion curves of the GWRMSE function h,(r,, g,) and the
Gaussian function f, (h,) with respect to the pixel gradi-
ent g,, we determined that the optimal pixel gradient g,,
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Fig. 5 (a) Impulse noise distribution of selected test images
from 100 MWIR raw images; (b) Impulse noise distribution of
selected test images from 100 LWIR raw images. The first col-
umn is the original images. The second column is the original im-
age's pixel values distribution models. The third column is the sec-
ond column's localized pixel value distribution models
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Table 2 Main parameters of the thermal infrared array
scanning camera

F2 ROHNNEFERHEBINEESH

Parameters MWIR LWIR
Spectral range 3-5 um 8-12 um
Array size 640512 320%256
Focal length 120 mm
Clear aperture 52 mm
Pixel pitch 15 pm 30 pm
Field of view (FOV) 4. 58°%3. 67°
Instantaneous FOV 125 prad 250 wrad

for a single MWIR raw image is 142, as depicted in
Fig. 7.

Since the MTF of an optical imaging system remains
constant, we assert that the optimal pixel gradient for the
MWIR camera is also fixed. We analyzed the optimal
pixel gradients of 100 MWIR raw images to substantiate
this claim. As depicted in Fig. 8(a), all tested images
exhibited an optimal pixel gradient of 142. This further
validates that our proposed method can consistently com-
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Merng| F, famevyo,y

Rear Optical Components

X
The Rear Optical Path o

Image Shift Compensator
The Front Optical Path 45° Image

Shift Compensation Mirror

Fig. 6 The internal framework of the thermal infrared array
scanning camera
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Fig. 7 Distribution curves of pixel gradient g, corresponding to
gradient weight RMSE h,(r,, g,) and Gaussian function f, (h, ) for
a single MWIR raw image, and the computed optimal pixel gradi-
entg,,
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pute the optimal pixel gradient for impulse noise removal
in the raw images based on the MTF calibrated of the op-
tical imaging system.

Upon obtaining the optimal pixel gradient for im-
pulse noise removal in the raw images, we applied our
proposed filter to remove low-density impulse noise from
100 raw images. The impulse noise density D €[0, 1],
the adaptive window size T = 0, and the partial filtering
results are illustrated in Fig. 9. Through comparison,
and it is evident that the proposed pixel gradient-based
filter effectively eliminates impulse noise while preserv-
ing and restoring the fine details of the raw images. To
provide a quantitative assessment, we conducted statisti-
cal analysis on the inconsistent pixels between the original
and denoised images. For the 100 test images, the maxi-
mum proportion of inconsistent pixels was 0. 396 7%, the
minimum proportion was 0. 221 1%, and the average pro-
portion was 0. 244 9%, as shown in Fig. 8(b). This in-
dicates that the proposed filter preserves over 99. 5% of
the pixels without compromising their integrity during im-
pulse noise removal. The denoised image corresponding
to the maximum proportion is depicted in Fig. 9(b), ex-
hibiting complex high-intensity features such as build-
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Fig. 9 (a) and (c) are the MWIR raw images; (b) and (d) are correspondingly noise-removed images.

&9

ings with significant variations among adjacent pixels.
The denoised image corresponding to the minimum pro-
portion is illustrated in Fig. 9(d), characterized by ho-
mogeneous low-intensity features like farmlands and
mountains with minimal fluctuation between neighboring
pixels. Throughout the entire noise removal process, the
average computation time for all the images was
0. 0080s, with a maximum of 0. 0170s and a minimum of
0Os, as displayed in Fig. 8(c). Therefore, our proposed
filter enables real-time impulse noise removal in MWIR
images, yielding excellent denoising results.

Similarly, after laboratory optical calibration of the
LWIR camera, the average MTF was measured to be

(a) Fl(c)Je LI AN AR P8 5 (b) AT (d) S X I B R P R AR 141 45

0.2704. Considering the maximum dynamic range of the
LWIR camera as I, = 12000 and the minimum dynamic
range as [

dr

o =9000, the maximum pixel gradient achiev-
able by this camera is g, = 1033. Consequently, the
pixel gradient set G = {1 <g, s 1033}is established for
the LWIR camera. Therefore, the optimal pixel gradient
for the 100 LWIR raw images is 137, as illustrated in
Fig. 10(a).

The impulse noise density D [0, 1] of the LWIR
raw images, so the adaptive window size of the proposed
filter to be T = 0. Through quantitative analysis and visu-
al inspection of the denoised images from the 100 LWIR
raw images, the maximum proportion of inconsistent pix-
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Fig. 10 (a)Optimal pixel gradient g,, of 100 LWIR raw images; (b) running time of 100 LWIR raw images with noise removed;

(¢)Inconsistent pixels ratio (%) of the 100 LWIR raw images corresponding to the denoised image
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Fig. 11

(c)

(a) and (c) are the LWIR raw images; (b) and (d) are correspondingly noise-removed images
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Table 3 Comparison of the mean ratio (%) of inconsistent pixels for 100 MWIR raw images and the corresponding de-

noised images by different state—of—the—art methods.

F3 AEFEH T ER 100 535K A H LTS E R FIIT B KR E SRR — B F B T 6] (%)

Methods
Images
MF BACNN HONTV-0GS £5-0GSTV DTN DCNN ALOHA Proposed
MWIR 67. 6434 84.5248 82. 0509 78. 6742 61.5255 7.2319 4.3921 0.2449
LWIR 73.3236 86. 4455 83. 6943 80. 6916 63. 7586 8. 8444 3.0736 0.2284

Fig. 12 Different state-of-the-art methods for denoising MWIR raw images: (a) raw image; (b) MF; (c) BACNN; (d) HONTV-OGS;

(e) €,-OGSTV; (f) DTN; (g) DCNN; (h) ALOHA; (i) Proposed

12 TRt T okt v 20 A0 G 5 2 (2) R 115 s (b)MF; (¢) BACNN; (d)HONTV-OGS; (€) £0-OGSTV; (f)DTN; (g)

DCNN; (h)ALOHA ; (i) Proposed

els was found to be 0.319 4%, the minimum proportion
was 0. 215 4%, and the average proportion was 0. 228 4%,
as shown in Fig. 10(b). This indicates that over 99. 5%
of the LWIR image pixels remain intact, largely preserv-
ing the original pixel while effectively removing the im-
pulse noise in the images, as illustrated in Fig. 11. Spe-
cifically, because there is a stripe noise " in Fig. 11
(a), Fig. 11(b) represents the denoised image corre-
sponding to the maximum proportion. At the same time,
Fig. 11(d) depicts the denoised image corresponding to
the minimum proportion. Throughout the entire noise re-
moval process, the average computation time for all the
images was 0. 001 6 s, with a maximum of 0. 016 0 s and

a minimum of Os, as displayed in Fig. 10 (c). There-
fore, the proposed optimal pixel gradient model and filter
demonstrate real-time impulse noise removal in LWIR
camera-captured images.
2.2 Comparison with other state—of—the—art meth-
ods through MWIR and LWIR images

In this section, we compare the proposed method
with seven filtering methods, including Median Filter
(MF) “, Blind Denoising Convolutional Neural Network
(BACNN) =8, High-order Nonconvex Total Variation
and Overlapping Group Sparsity (HONTV-OGS) fusion
method "', €, Overlapping Group Sparse Total Variation
(€£,-0GSTV) method 401 Distribution Transformation



430 AP/ NI Qb A 43 %

(a) (b)

(e) (f)

(d)

(c)

(h) (i)

Fig. 13 Different state-of-the-art methods for denoising LWIR raw images: (a) raw image; (b) MF; (¢) BACNN; (d) HONTV-OGS; (e)

£,-0GSTV; (f) DTN; (g) DCNN; (h) ALOHA; (i) Proposed
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DCNN; (h)ALOHA ; (i) Proposed

Network (DTN) “", Deep Convolutional Neural Network
(DCNN) ", and Rank-deficient Hankel Matrix-based
Low-rank Approximation (ALOHA) method ', using
the MWIR and LWIR raw images. The denoised results
of the MWIR and LWIR raw images are presented in
Fig. 12 and 13, respectively. It is evident that all seven
advanced filtering methods and our proposed method ef-
fectively remove discrete and low-density RVIN from the
images while restoring rich image details. Additionally,
we computed the average proportion of inconsistent pixels
before and after denoising for 100 MWIR and 100 LWIR
original images, as shown in Table 3. It is clear that our
proposed pixel gradient-based method successfully re-
moves RVIN in the original images while preserving over
99. 5% of the original pixels. In contrast, the other meth-
ods have caused varying degrees of damage to the original
pixels in the images.
2.3 Comparison of high—density SAPN with state—
of—the—art methods

This section compares the proposed filter with seven
advanced impulse noise filtering methods through simula-
tion experiments to evaluate its denoising performance on
high-density SAPN. The quality of the denoised images

is quantitatively evaluated using the Peak Signal-to-Noise

(a) (b) (¢c)

Ratio (PSNR) and Structural Similarity Index (SSIM).
PSNR measures the noise density relative to the original
image *'. SSIM, which approximates human visual per-
ception, assesses the similarity between the processed
and original images . Generally, higher values of
PSNR and SSIM indicate that the quality of the processed
image approaches that of the original image. The defini-

tions of PSNR and SSIM are as follows:

PSNR = 10 x logyy (e = L)’ (27)
N T ’

where MSE is the mean square error of the original image
I, and the processed image /,.

(Q#LI,,/LII, +C, )(20'1(,1,, +C,)
(#1,,2 +:U*1,,2 + Cl)(a'l,,z + 0'1,,2 + Cz)

where w,, u,, o,, o,, and o, are the local means,

SSIM =

. (28)

standard deviations, and cross-covariance for images
land I, respectively. C,and C,are two constants, C, =
[0. 012, ~ 1)) €, =[0.03(1%, - 1%,)].

Firstly, we selected six different types of 512x512,
8-bit publicly available grayscale test images for SAPN
simulation, as shown in Fig. 14. Since the camera’s
MTF of the simulated images is unknown, use SPAN to
destroy the standard test images. Then, according to the

(d)

Fig. 14 Test images: (a) Lena; (b) Bridge; (c) Pepper; (d) Baboon; (e) Boat; (f) Barbara
P14 ISR ()RR (b)) 5 (o) BB ()R ; () il s () BB
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Table 4 Compared the proposed method with seven state—of-the—art filtering methods by PSNR (dB) and SSIM for

D = {20%,50%,80% |SAPN

x4 HIID={ 20%,50%,80% }SAPN, 2 H K75 #5183 PSNR 1 SSIM 5 + 1 55 i# B8 i /7 iE 34T LU B

PSNR (dB) SSIM
Method Image
(a) (b) (c) (d) (e) (f) (a) (b) (¢) (d) (e) (f)

D =20%
NOISY 12.43 12.24  12.31 12.54  12.45 12.38 0.0832 0.177 3 0.0839 0.2154 0.1139 0.1387
MF 31.18 24.68  31.38 22.33  27.92 24.21 0.9097 0.7177 0.9093 0.6403 0.8319 0.7470
BACNN 38.43 30.55 33.79 20.47 35.29  33.49 0.9658 0.9278 0.9383 0.9315 0.9452 0.956 9
HONTV-0GS 39.25 32.16 38.99 29.76 37.41 32.41 0.9614 0.9451 0.9540 0.9349 0.9543 0.938 8
€,-OGSTV 40.72  33.53  40.53  31.08 38.91 33.69 0.9725 0.958 6 0.9678 0.9489 0.9664  0.9504
DTN 42.63  32.48 40.16 29.62  38.49 34.07 0.9886 0.9612 0.9802 0.9523 0.9754 0.9694
DCNN 43,13 33.02  42.10 30.68 39.56 40.13 0.9840 0.946 8 0.9802 0.9688 0.9721 0.9821
ALOHA 45.23 32.43 43.61 31.44 42.70  44.95 0.9942 0.9617 0.990 1 0.965 4 0.9909 0.9938
Proposed 39.58 31.63 38.55 28.95 35.58  30.59 0.9847 0.9511 0.981 8 0.9383 0.968 0 0.9559

D =50%
NOISY 8. 46 8.26 8.31 8.57 8.49 8.43 0.0250 0. 0549 0.0263  0.069 0 0. 349 0.044 8
MF 24.89  21.17  25.09 19.75 23.03 22.03 0.8073 0.5171 0.8325 0.4328 0.6826  0.6371
BdCNN 32.71  25.51  32.03 23.32  29.50 27.70 0.91438 0.7551 0.8994 0.7109 0.8606 0.8404
HONTV-0GS 34.33 27.30 35.17 24.70 32.44  26.57 0.9206 0. 8201 0.9134 0.7755 0.8862 0.801 2
€,-0GSTV 38.91 29.98 38. 60 26. 85 35.89 28.42  0.9676 0.9130 0.9597 0.8824 0.949 6 0.896 3
DTN 36.36  27.70  37.93  24.95 32.72 27.67 0.9546 0. 8751 0.9636  0.8435 0.9215 0.8877
DCNN 36.55 28.38 35.35 26.44  34.20 33.18 0.9500 0. 8978 0.9464 0.8802 0.9231 0.9587
ALOHA 38.61 27.64 37.63 26.10 35.32 38.94 0.9758 0. 8781 0.9624  0.8766 0.9581 0.9780
Proposed 33.58 26. 45 32.38 24.03 29.86 25.75 0.9462 0. 8422 0.9385 0.804 7 0.897 1 0.8592

D =80%
NOISY 6.43 6.21 6.27 6.53 6. 44 6.37 0.009 3 0.0169 0.009 6 0.0210 0.0123 0.0138
MF 18.75 17.20  18.07 16.72  17.67 18.53  0.6619 0.309 5 0.6872 0.2685 0.5018 0.5151
BdCNN 22.52  19.84  22.14  18.41 20.86 20.98 0.6612 0.414 1 0.6798 0.3393  0.5671 0.5492
HONTV-0GS 26.98  18.64  21.83  20.20 21.33 22.41 0.7260 0.3500 0.6321 0.3382 0.5074 0.5508
€,-0GSTV 31.96 24.90 31.56 22.41 28.63 24.88 0.9217 0.7535 0.914 5 0.6747 0. 860 8 0.7707
DTN 30. 18 23.70 29. 46 21.26 27.18 23.59 0.8703 0.6747 0.866 0 0.600 3 0.796 2 0.716 9
DCNN 32.46  24.58  31.29  22.31 29.14  26.28 0.9187 0.7504  0.8867 0.6521 0.8462 0.8329
ALOHA 32.44  23.89  32.26 22.08 28.82 31.57 0.9216 0. 687 3 0.9048 0.6516 0.8514  0.9240
Proposed 28. 68 22.58 27.78 20. 56 25.60 22.61 0.8640 0. 6467 0.8516 0.5538 0.7629 0.707 8

characteristics of SAPN, the optimal pixel gradient g,, =
255 for all test images and the salt noise set S = {255}
and pepper noise set P ={0}. Finally, the proposed
method and seven comparative denoising methods are ap-
plied to the standard test images for SAPN removal, and
the quality of the resulting images is quantitatively evalu-
ated using PSNR and SSIM. Meanwhile, the computa-
tional efficiency of all denoising methods is assessed
based on their running time under the same conditions.
Figs. 15, 16, and 17 present the restoration results
of the test images after being contaminated with SAPN for
both the comparative and proposed methods. For the
20% SAPN corrupted test image, all the methods can ef-
fectively remove the impulse noise from the image and
maintain good image details, except for the MF method
restored image, which suffers from severe smoothing.

For the test images damaged by 50% SAPN, the MF and

BdACNN methods recovery results suffer

from severe smoothing. For the test images damaged
by 80% SAPN, the restoration results of the MF,
BACNN, and HONTV-OGS methods exhibit severe dis-
tortion. In contrast, the other methods produce excellent
denoising results, maintaining the integrity of the image
content, including our proposed method. However, our
method exhibits poor recovery results compared to the
other four methods. Although the object’s structure in
the image is intact, the gradient of the pixels at the ob-
ject's edges falls off so much that the replacement pixels
are easily affected by the neighboring pixels and do not
reach the gray value of the original pixels. Moreover, our
proposed method can effectively restore meaningful im-
age details even for images severely damaged by extreme
SAPN. As demonstrated in Fig. 18, although the im-

age's texture suffers severe damage and smoothing, the
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(b)

Fig. 15 Denoised results of Baboon test images: (a) Clean image; (b) noisy image with 20% SAPN; (¢) MF; (d) BACNN; () HONTV-
0GS; (f) £,-OGSTV; (g) DTN; (h) DCNN; (i) ALOHA; (j) Proposed
15 Baboon I 2 P15 1 M 25 2« () T4+ M5 5 (D) 20%SAPN (11 75 €4 5 (¢)MF; (d) BACNN;; (¢)HONTV-OGS;; (f) £0-OG-

STV; (g)DTN; (h)DCNN; (i) ALOHA ; (j ) Proposed

(b)

(f) (g)

i

£

Fig. 16 Denoised results of Bridge test images: (a) Clean image; (b) noisy image with 50% SAPN; (c) MF; (d) BACNN; (e) HONTV-
0GS; (f) £,-OGSTV; (g) DTN; (h) DCNN; (i) ALOHA; (j) Proposed
16  Bridge Mk FIMG AY W 45 3 - (a) T4 B 5 (b) 50%SAPN HY I 75 K144 ; (¢ )MF; (d) BACNN;; (¢) HONTV-OGS; (f) £0-OG-

STV; (g)DTN; (h)DCNN; (i) ALOHA ; (j) Proposed

edges of the objects in the image are well restored and
preserved, and the visual analysis can still distinguish
different features.

Table 4 presents the PSNR and SSIM of all test im-
ages after being corrupted by SAPN and restored using
all filtering methods. Correspondingly, Table 5 provides
the average running time of all filtering methods for de-
noising all test images. Through comprehensive analy-

sis, our proposed method demonstrates excellent denois-
ing results compared to the MF, BACNN, and HONTV-
OGS methods.

Compared to the €,-OGSTV, DTN, DCNN, and
ALOHA methods, although our proposed method does
not exhibit superior image restoration, it requires less de-
noising time. In summary, our proposed denoising meth-

od performs well, showing excellent PSNR and SSIM
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Fig. 17 Denoised results of Lena test images: (a) Clean image; (b) noisy image with 80% SAPN; (c) MF; (d) BACNN; (e) HONTV-

0GS; (f) €,-0GSTV; (g) DTN; (h) DCNN; (i) ALOHA ; (j) Proposed
B 17  Lena ik EIMG 09 2 Mgk . (a) T E1M% 5 (b) 80%SAPN A 5 K115 5 (¢ )MF; (d)BACNN; (e )JHONTV-OGS;; () £0-OGSTV ;
(g)DTN; (h)DCNN; (i) ALOHA ; (j) Proposed

Table S Compared the proposed method with seven state—of-the—art filtering methods by running time (s) for D =

{20%.,50%,80% |SAPN

& 5 HXD={ 20%,50%,80% }SAPN, 2 H &7 K BITIETT R 18 (s) 5563 AR 77 R 1T LB

Methods
b MF BdACNN HONTV-0GS £,~0GSTV DTN DCNN ALOHA Proposed
20% 0.001 1 0.5633 34.1217 12.379 1 6.376 4 7.842 1 4721.4242 0.6227
50% 0.001 1 0.564 6 34.442 1 14.9745 6.4049 7.8396 3328.8511 1.3039
80% 0.001 1 0.560 3 36.056 9 19.057 6 6.4055 7.8304 1780.774 5 1.9440

(b)

(d) (e)

Fig. 18 Denoising results of Boat test images at extreme SAPN: (a) clean image; (b) noisy image with 97% SAPN; (c¢) recovered im-
age of the proposed method; (d) noisy image with 99% SAPN; (e) recovered image of the proposed method
18 PR SAPN "I i) Boat {lll i €] 2 (9 L IR 45 3R« (a) Tt K145 5 (b) 97%SAPN A9 I A5 45 5 () BIr #1277 6 A = MR 5 (d)

99%SAPN [ I K4 5 () T4 J5 vk I 1 52 1115

compared to some faster methods. In terms of methods
with superior PSNR and SSIM performance, our pro-
posed method demonstrates a speedier computation time.
Besides, our proposed method can remove SAPN from

0% to 99%.
3 Conclusion

This paper proposes a pixel gradients-based adap-

tive iterative median filter to remove low-density impulse
noise and 0% to 99% SAPN in single-channel images.
Firstly, based on the imaging principle of optical camer-
as, we utilize the camera’s MTF to obtain the maximum
pixel gradient of the original image and establish the pix-
el gradients set of that camera. Next, we calculate the
GWRMSE between the original image and the corre-
sponding pixel gradient filtered image. Finally, the opti-
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mal pixel gradient is determined as the one correspond-
ing to the maximum value of the Gaussian distribution of
the GWRMSE set. By considering the noise density and
complexity of the impulse noise, we can determine the
adaptive window size of the proposed filter and the re-
quired number of iterations to remove the impulse noise
in the image. Extensive experimental results demonstrate
that the developed filter exhibits robustness in removing
8-bit and 16-bit single-channel impulse noise images, ef-
fectively removing low-density RVIN from real thermal
infrared camera-acquired images in real-time. Compared
to other advanced methods, this approach achieves a
preservation rate of 99. 5% of the original pixels during
denoising. Furthermore, for high-density SAPN in imag-
es, our proposed filter obtains competitive results com-
pared to advanced filtering methods, showing better
PSNR and SSIM compared to faster filtering methods and
faster computation time compared to methods with superi-
or PSNR and SSIM. Additionally, for images severely
damaged by extreme SAPN, the proposed method can re-
cover meaningful image details.
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